Leaf diseases, such as Black Sigatoka and Cordana, represent a growing threat to banana crops in Ecuador. These diseases spread rapidly, impacting both leaf and fruit quality. Early detection is crucial for effective control measures. Recently, deep learning has proven to be a powerful tool in agriculture, enabling more accurate analysis and identification of crop diseases. This study applied the CRISP-DM methodology, consisting of six phases: business understanding, data understanding, data preparation, modeling, evaluation, and deployment. A dataset of 900 banana leaf images was collected—300 of Black Sigatoka, 300 of Cordana, and 300 of healthy leaves. Three pre-trained models (EfficientNetB0, ResNet50, and VGG19) were trained on this dataset. To improve performance, data augmentation techniques were applied using TensorFlow Keras’s ImageDataGenerator class, expanding the dataset to 9000 images. Due to the high computational demands of ResNet50 and VGG19, training was performed with EfficientNetB0. The models—EfficientNetB0, ResNet50, and VGG19—demonstrated the ability to identify leaf diseases in bananas, with accuracies of 88.33%, 88.90%, and 87.22%, respectively. The data augmentation increased the performance of EfficientNetB0 to 87.83%, but did not significantly improve its accuracy. These findings highlight the value of deep learning techniques for early disease detection in banana crops, enhancing diagnostic accuracy and efficiency.
Read full abstract