Ophidiomycosis is a prevalent and intermittently pervasive disease of snakes globally caused by the opportunistic fungal pathogen, Ophidiomyces ophidiicola. Host response has yet to be fully explored, including the role of temperature in disease progression and hematologic changes. This study enrolled twelve adult prairie rattlesnakes (Crotalus viridis) in an experimental challenge with O. ophidiicola at two temperatures, 26°C (n = 6) and 20°C (n = 6). Each temperature cohort included four inoculated and two control snakes. Assessments involving physical exams, lesion swabbing, and hematology were performed weekly. Differences were observed between inoculated and control snakes in survival, behavior, clinical signs, ultraviolet (UV) fluorescence, hematologic response, and histologic lesions. All inoculated snakes held at 20°C were euthanized prior to study end date due to severity of clinical signs while only one inoculated animal in the 26°C trial met this outcome. In both groups, qPCR positive detection preceded clinical signs with regards to days post inoculation (dpi). However, the earliest appearance of gross lesions occurred later in the 20°C snakes (20 dpi) than the 26°C snakes (13 dpi). Relative leukocytosis was observed in all inoculated snakes and driven by heterophilia in the 20°C snakes, and azurophilia in the 26°C group. Histologically, 20°C snakes had more severe lesions, a lack of appropriate inflammatory response, and unencumbered fungal proliferation and invasion. In contrast, 26°C snakes had marked granulomatous inflammation with encapsulation of fungi and less invasion and dissemination. The results of this study identified that O. ophidiicola-infected rattlesnakes exposed to lower temperatures have decreased survival and more robust hematologic change, though minimal and ineffective inflammatory response at site of infection. Ophidiomycosis is a complex disease with host, pathogen, and environmental factors influencing disease presentation, progression, and ultimately, survival. This study highlighted the importance of temperature as an element impacting the host response to O. ophidiicola.
Read full abstract