A multi-wavelength investigation of the star forming complex IRAS 20286+4105, located in the Cygnus-X region, is presented here. Near-infrared K-band data is used to revisit the cluster / stellar group identified in previous studies. The radio continuum observations, at 610 and 1280 MHz show the presence of a HII region possibly powered by a star of spectral type B0 - B0.5. The cometary morphology of the ionized region is explained by invoking the bow-shock model where the likely association with a nearby supernova remnant is also explored. A compact radio knot with non-thermal spectral index is detected towards the centre of the cloud. Mid-infrared data from the Spitzer Legacy Survey of the Cygnus-X region show the presence of six Class I YSOs inside the cloud. Thermal dust emission in this complex is modelled using Herschel far-infrared data to generate dust temperature and column density maps. Herschel images also show the presence of two clumps in this region, the masses of which are estimated to be {\sim} 175 M{\sun} and 30 M{\sun}. The mass-radius relation and the surface density of the clumps do not qualify them as massive star forming sites. An overall picture of a runaway star ionizing the cloud and a triggered population of intermediate-mass, Class I sources located toward the cloud centre emerges from this multiwavelength study. Variation in the dust emissivity spectral index is shown to exist in this region and is seen to have an inverse relation with the dust temperature.
Read full abstract