A recently introduced Dual Three-Phase Active Bridge Converter (D3ABC) provides two three-phase ac ports (ac <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${}_{1}$</tex-math></inline-formula> and ac <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${}_{2}$</tex-math></inline-formula> ), two dc ports (dc <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${}_{1}$</tex-math></inline-formula> and dc <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${}_{2}$</tex-math></inline-formula> ), and galvanic isolation between the ports ac <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${}_{1}$</tex-math></inline-formula> , dc <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${}_{1}$</tex-math></inline-formula> (primary side) and ac <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${}_{2}$</tex-math></inline-formula> , dc <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${}_{2}$</tex-math></inline-formula> (secondary side). Previously documented studies confirm that the D3ABC is generally capable of transferring power between all four ports. However, it has been found challenging to operate the converter if ac voltages with different line frequencies, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$f_{1} \ne f_{2}$</tex-math></inline-formula> , are present at the ports ac <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${}_{1}$</tex-math></inline-formula> and ac <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${}_{2}$</tex-math></inline-formula> . Such operation causes Low-Frequency (LF) power pulsations in the converter's dc links, leading to fluctuating dc link voltages and distorted phase currents. In this paper, a new duty-cycle dependent phase shift modulation scheme is proposed that eliminates such LF power pulsations and substantially increases the theoretical maximum transmittable power between primary and secondary sides compared to previous work. The new modulation scheme is developed on the basis of analytical considerations, which are supported by the results of numerical calculations, and verified by means of circuit simulations and experimental results. A hardware demonstrator originally designed for a rated power of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$8\,\mathrm{kW}$</tex-math></inline-formula> when operated from ac <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${}_{1}$</tex-math></inline-formula> to dc <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${}_{2}$</tex-math></inline-formula> at the European low-voltage ac mains ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$V_{ac,1} = 230\,\mathrm{V}$</tex-math></inline-formula> line-to-neutral rms, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$V_{dc,1} = 800\,\mathrm{V}$</tex-math></inline-formula> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$V_{dc,2} = 400\,\mathrm{V}$</tex-math></inline-formula> ) is used for experimental verification. Since the operation with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$f_{1} \ne f_{2}$</tex-math></inline-formula> leads to an increase of the currents in the converter, the experimental verification is conducted at half voltages and for a reduced power of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$2\,\mathrm{kW}$</tex-math></inline-formula> that is transferred from ac <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${}_{1}$</tex-math></inline-formula> to ac <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${}_{2}$</tex-math></inline-formula> at substantially different primary-side and secondary-side line frequencies of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$f_{1} = 50\,\mathrm{Hz}$</tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$f_{1} = 77\,\mathrm{Hz}$</tex-math></inline-formula> . The measured results agree well with the simulated results. In particular, the dc link voltages show almost constant waveforms, which confirms the correct operation of the proposed modulation scheme.
Read full abstract