Fire is a widespread phenomenon that plays an important role in Earth's ecosystems. This study investigated the global spatiotemporal patterns of burned areas, daytime and nighttime fire counts, and fire radiative power (FRP) from 2001 to 2020. The month with the largest burned area, daytime fire count, and FRP presented a bimodal distribution worldwide, with dual peaks in early spring (April) and summer (July and August), while the month with the largest nighttime fire count and FRP showed a unimodal distribution, with a peak in July. Although the burned area showed decline at the global scale, a significant increase occurred in temperate and boreal forest regions, where nighttime fire occurrence and intensity have consistently increased in recent years. The relationships among burned area, fire count, and FRP were further quantified in 12 typical fire-prone regions. The burned area and fire count exhibited a humped relationship with FRP in most tropical regions, whereas the burned area and fire count constantly increased when the FRP was below approximately 220 MW in temperate and boreal forest regions. Meanwhile, the burned area and FRP generally increased with the fire count in most fire-prone regions, indicating an increased risk of more intense and larger fires as the fire count increased. The spatiotemporal dynamics of burned areas for different land cover types were also explored in this study. The results suggest that the burned areas in forest, grassland, and cropland showed dual peaks in April and from July to September while the burned areas in shrubland, bareland, and wetlands usually peaked in July or August. Significant increases in forest burned area were observed in temperate and boreal forest regions, especially in the western U.S. and Siberia, whereas significant increases in cropland burned area were found in India and northeastern China.
Read full abstract