The effects of various grazing management systems on sown, naturalised, and native pastures were studied at 6 different locations in the temperate high rainfall zone (HRZ, >600 mm rainfall/year) of southern Australia, as part of the Sustainable Grazing Systems (SGS) Program. The treatments examined had different pasture species and fertiliser management, with grazing method ranging from set stocking (continuous grazing) to rotation with rests based on pre- and post-grazing herbage mass or season and plant phenology. Sites were located at: Albany, Western Australia; Manilla, Barraba, Nundle, New South Wales; (grazed by wethers); and Carcoar, New South Wales; Maindample, Ruffy, north-east Victoria; Vasey, western Victoria; (grazed by ewes and lambs).Grazing method significantly (P<0.001) influenced stocking rate (expressed as dry sheep equivalents (DSE)/ha), but effects were not consistent across sites. At Vasey the stocking rate of the rotation treatments ranged from 5 to 23% higher than the set stocked treatments depending upon year. For all sites, significant factors (P<0.001) affecting stocking rate were soil Olsen P, soil pH, grazing management (resting), legume percent, and an index of growing season effectiveness. Although total annual rainfall had a significant effect (P<0.002) in an initial analysis, its influence became non-significant (P>0.05), when a growing season index (P<0.001) was used. Non-significant (P>0.05) factors included solar radiation, annual average temperature, fertiliser applied in the current year, and average annual perennial and broadleaf percent composition. The implications of these data for productivity and sustainability (as assessed by perenniality and water use) were encouraging. Generally, there were positive relationships between increased stocking rate and the probability of achieving a zero mm soil water surplus in winter, and between increased productivity and the proportion of perennial grass species where extremes of treatments were compared at each site. The results indicate that stocking rate can be increased without jeopardising sustainability, that grazing management can bring about more sustainable pastures, that there is scope to increase productivity particularly through increasing soil fertility, and growing season length can be used to predict potential carrying capacity. These are positive outcomes that graziers in the HRZ of southern Australia can use to enhance productivity (thus profitability) and sustainability.
Read full abstract