The spread of multidrug resistant Mycobacterium tuberculosis is one of the major challenges in tuberculosis control. In Eurasia, the spread of multidrug resistant tuberculosis is driven by the M. tuberculosis Beijing genotype. In this study, we examined whether selective advantages are present in the proteome of Beijing isolates that contribute to the emergence of this genotype. To this end, we compared the proteome of M. tuberculosis Beijing to that of M. tuberculosis H37Rv, both in the presence and absence of the first-line antibiotic rifampicin. During rifampicin exposure, both M. tuberculosis genotypes express proteins belonging to the DosR dormancy regulon, which induces a metabolically hypoactive-, drug tolerant phenotype. However, these markers of rifampicin tolerance were already more abundant in the M. tuberculosis Beijing isolate prior to drug exposure. To determine whether the a priori high abundance of specific proteins contribute to the formation of antibiotic resistance in M. tuberculosis Beijing, we quantified the abundance of 33 selected proteins in 27 clinical isolates from the five most common M. tuberculosis lineages using parallel reaction monitoring. The observed pre-existing high abundance of dormancy proteins in Beijing strains provides an evolutionary advantage that allows these strains to persist for prolonged periods during rifampicin treatment. SignificanceM. tuberculosis is the leading cause of death by a bacterial infection worldwide. Treatment-regimen to eradicate this pathogen make use of the first-line antibiotic rifampicin, which is considered to be the cornerstone of modern day anti-tuberculosis treatment. Despite the potency of rifampicin, there is an increasing occurrence of rifampicin resistant mutants in a specific cluster of M. tuberculosis, the Beijing genotype. Using both a data dependent acquisition and a targeted proteomic approach we identified markers of rifampicin tolerance to be high abundant in members of the M. tuberculosis Beijing genotype, already prior drug exposure. The identification of this M. tuberculosis Beijing specific trait will contribute to improved diagnostics and treatment of M. tuberculosis.
Read full abstract