Microplastics resulting from the fragmentation of plastics in electronic waste (e-waste) are an emerging but understudied environmental concern. This systematic review employs a Driver–Pressure–State–Impact–Response (DPSIR) framework to investigate the sources, prevalence, and environmental effects of e-waste microplastics, identifying knowledge gaps. The available literature on e-waste microplastics was retrieved from Scopus and Web of Science (n = 24), and trends in electrical and electronic equipment were retrieved from European Union databases. The growing incorporation of electronics into daily life results in a global annual growth rate of 3–4% for e-waste, of which only 17.4% is collected for recycling. E-waste microplastics are frequently found in soils near disposal or disassembly facilities, potentially leaching hazardous metals (e.g., Pb) or organic compounds (e.g., flame retardants). These microplastics contaminate the food chain and can have adverse effects on the soil and gut microbiome, organisms, and human health, either independently or associated with other chemicals. Responses include the implementation of regulations, improvement of waste management systems, and mitigation measures. Despite these concerns, the literature on the topic remains limited, emphasizing the need for additional research on the identification of e-waste microplastics and their toxicity.
Read full abstract