We studied the microbial communities collected from hydrate-bearing sediments on the North Slope of Alaska to determine how abiotic variables (e.g., grain size, hydrate presence, formation fluid gases) may correspond to the type and distribution of microbes in the sediments. The cores were acquired from sub-permafrost, Eocene (46–55 million year old) sediments in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well within which hydrates are believed to have formed 1.5 mya. Forty samples, eight of which originally contained hydrates, were acquired from depths of ca. 606–666 m below land surface. Five drilling fluid samples acquired from the same depth range were included in the analysis as a control for possible contamination by drilling fluid microbes during the drilling and handling of cores. DNA was extracted from 15 samples (typically <1 ng DNA/g sediment was recovered) and then amplified using polymerase chain reaction with primers specific for bacterial and archaeal 16S rDNA genes, which indicates the likelihood that microbes were present in all analyzed samples. Only bacterial DNA amplicons were detected. Terminal-restriction fragment length polymorphism (T-RFLP) was used to measure bacterial diversity in the respective samples. Non-metric multidimensional scaling (NMS) was used to determine the abiotic variables that may have influenced bacterial diversity. NMS analysis revealed that the microbial taxa present in the sediment were distinct from the taxa present in the drilling fluids suggesting that the sediments were not contaminated by the drilling fluids. Multi-response permutation procedures (MRPP) found no significant difference between three sample groups identified a priori as being from within a hydrate zone, outside of hydrate zone, or on the edge of a hydrate/non-hydrate zone according to downhole nuclear magnetic resonance spectroscopy logs. However, among the several other abiotic parameters that were evaluated mud gas methane concentration and variables related to hydrate presence (e.g., chloride concentration, salinity, and resistivity) appeared to define the arrangement of microbial community signatures in plots resulting from NMS analysis. Communities from hydrate and non-hydrate layers each contained unique taxa as determined by the T-RFLP assay.
Read full abstract