The sensing performance of DNAzymes in live cells is tremendously hampered by the inefficient and inhomogeneous delivery of DNAzyme probes and their incontrollable off-site activation, originating from their susceptibility to nuclease digestion. This requires the development of a more compact and robust DNAzyme-delivering system with site-specific DNAzyme activation property. Herein, a highly compact and robust Zn@DDz nanoplatform is constructed by integrating the unimolecular microRNA-responsive DNA-cleaving DNAzyme (DDz) probe with the requisite DNAzyme Zn2+ -ion cofactors, and the amplified intracellular imaging of microRNA via the spatiotemporally programmed disassembly of Zn@DDz nanoparticles is achieved. The multifunctional Zn@DDz nanoplatform is simply composed of a structurally blocked self-hydrolysis DDz probe and the inorganic Zn2+ -ion bridge, with high loading capacity, and can effectively deliver the initially catalytic inert DDz probe and Zn2+ into living cells with enhanced stabilities. Upon their entry into the acidic microenvironment of living cells, the self-sufficient Zn@DDz nanoparticle is disassembled to release DDz probe and simultaneously supply Zn2+ -ion cofactors. Then, endogenous microRNA-21 catalyzes the reconfiguration and activation of DDz for generating the amplified readout signal with multiply guaranteed imaging performance. Thus, this work paves an effective way for promoting DNAzyme-based biosensing systems in living cells, and shows great promise in clinical diagnosis.
Read full abstract