The rotation lengths of intensively managed production forests may be altered to achieve a variety of goals, with correspondingly implications for biodiversity. Here we consider the potential implications of shortened rotation times for biodiversity in planted monocultures of the two most common production tree species in Sweden, Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). To do so we surveyed bird, bryophyte, epiphytic lichen and vascular plant diversity in 80 and 55-year-old stands; stand ages which approximate present-day and potential future rotation lengths in this region respectively. We found clear differences in the species communities of the 55 compared to the 80-year-old stands for both understory species and epiphytes, but not for birds. Nevertheless, bird species richness was still highest in the 80-year-old Norway spruce dominated stands. Dead wood amount was also highest the 80-year-old Norway spruce stands. Highest species richness of epiphytic lichens was found in 80-year-old Scots pine stands. However, 55-year-old Scots pine stands had a higher understory species richness and diversity than the older Scots pine stands, including a larger number of open land species. The 80-year-old forest stands examined may be considered old with respect to production forest rotation lengths in Sweden but are relatively young when comparing stand ages of unmanaged natural forest stands. Nevertheless, our results indicate that shortening the rotation time of Scots pine and Norway spruce, in this part of Sweden from 80 to 55 years, could have important consequences for forest biodiversity. These consequences are primarily inferred from the likely implications from shortened rotations for lichens community composition and diversity in both Norway spruce and Scots pine stands, as well as impacts on understory plant species in Norway spruce stands.
Read full abstract