Ionizing radiation (IR) is applied to inactivate nuclear genome in the salmonid eggs to induce androgenetic development. However, it has been considered that doses of IR used to damage maternal chromosomes may also affect morphology of the eggs and decrease their developmental potential. Thus, the main goal of the present research was to assess alterations in the rainbow trout (Oncorhynchus mykiss) eggs caused by the high dose of IR administered during androgenesis. In the present research, rainbow trout eggs were irradiated with 350Gy of X-rays, inseminated and exposed to the high hydrostatic pressure (HHP) shock to develop as androgenetic doubled haploids (DHs). The distribution of lipid droplets in the irradiated and non-irradiated rainbow trout eggs, survival rates and morphology of larvae from androgenetic and control groups were compared. It has been observed that non-irradiated and irradiated eggs exhibited altered distribution of lipid droplets. Most of the eggs before IR treatment displayed rather equal distribution of the oil droplets. In turn, majority of eggs studied after irradiation had coalesced lipid droplets, a pattern found in eggs with reduced quality. Incidences of abnormally developed larvae were more frequently observed among fish that hatched from the irradiated eggs. Observed changes suggest X-rays applied for the genetic inactivation of rainbow trout eggs may lead to decrease of their developmental competence.
Read full abstract