In the future grids, to reduce greenhouse gas emissions Electric Vehicles (EVs) seems to be an important means of transportation. One of the major disadvantages of the future grid is the demand-supply mismatch which can be mitigated by incorporating the EVs into the grid. The paper introduces the concept of the Distributed Resource Allocation (DRA) approach for incorporating a large number of Plug-in EV (PEVs) with the power grid utilizing the concept of achieving output consensus. The charging/discharging time of all the participating PEVs are separated with respect to time slots and are considered as strategies. The major aim of the paper is to obtain a favorable charging strategy for each grid-connected PEVs in such a way that it satisfies both grid objectives in terms of load profile smoothening and minimizing of load shifting as well as economic and social interests of vehicle owners i.e. a fair share of the rate of charging for all connected PEVs. The three-fold contribution of the paper in smoothening of load profile, load shifting minimization, and fair charging rate is validated using a representative case study. The results confirm improvement in load profile and also highlight a fair deal in the charging rate for each PEV.
Read full abstract