Software development environment has been changing into new development paradigms such as concurrent distributed development environment and the so-called open source project by using network computing technologies. Especially, an OSS (open source software) system which serves as key components of critical infrastructures in the society is still ever-expanding now. In case of considering the effect of the debugging process on an entire system in the development of a method of reliability assessment for the OSS, it is necessary to grasp the deeply-intertwined factors, such as programming path, size of each component, skill of fault reporter, and so on. In order to consider the effect of each software component on the reliability of an entire system, we propose a new approach to user-oriented software reliability assessment by creating a fusion of neural network and software reliability growth modeling. In this paper, we show application examples of component-oriented software reliability assessment based on neural network and software reliability growth modeling for the OSS. Also, we analyze actual software fault count data to show numerical examples of software reliability assessment for the OSS. Moreover, we develop the testing management tool for OSS.
Read full abstract