This paper presents a novel filtering technique based on sample adaptive offset (SAO) in H.265/high-efficiency video coding (HEVC) for reduction in the temporal flickering artifacts and improving the coding performance. SAO is a newly introduced technique for in-loop filtering in H.265/HEVC, which derives the offsets independently for each frame in the spatial domain without considering temporal frame correlation. As a result, the temporal distortion artifacts which will have a negative effect on the subjective quality, such as flickering artifacts, cannot be effectively addressed. In this paper, the rate-distortion optimization of the newly developed SAO method, referred to as Inter-SAO, is performed on the residual samples between adjacent frames. Inter-SAO and SAO in the reference software of H.265/HEVC (i.e., the test model HM) are then combined to form the novel in-loop filter-based method, denoted as 3D-SAO filtering method, where both spatial information and temporal information are effectively utilized to reduce the overall distortion in reconstructed videos. Compared with the SAO in HM, 3D-SAO has demonstrated its advanced performance for flickering artifacts suppression. Furthermore, 3D-SAO improves the coding efficiency compared with the SAO in HM with a performance gain of up to 0.91 dB in $$\Delta PSNR$$ΔPSNR, 1.74 dB in $$\Delta PSPNR$$ΔPSPNR and 7.33 % in BD-rate reduction.
Read full abstract