Background and Objectives: Lower-extremity ischemia-reperfusion injury can induce distant organ ischemia, and patients with diabetes are particularly susceptible to ischemia-reperfusion injury. Sevoflurane, a widely used halogenated inhalation anesthetic, and fullerenol C60, a potent antioxidant, were investigated for their effects on heart and lung tissues in lower-extremity ischemia-reperfusion injury in streptozotocin (STZ)-induced diabetic mice. Materials and Methods: A total of 41 mice were divided into six groups: control (n = 6), diabetes-control (n = 7), diabetes-ischemia (n = 7), diabetes-ischemia-fullerenol C60 (n = 7), diabetes-ischemia-sevoflurane (n = 7), and diabetes-ischemia-fullerenol C60-sevoflurane (n = 7). Diabetes was induced in mice using a single intraperitoneal dose of 55 mg/kg STZ in all groups except for the control group. Mice in the control and diabetes-control groups underwent midline laparotomy and were sacrificed after 120 min. The DIR group underwent 120 min of lower-extremity ischemia followed by 120 min of reperfusion. In the DIR-F group, mice received 100 μg/kg fullerenol C60 intraperitoneally 30 min before IR. In the DIR-S group, sevoflurane and oxygen were administered during the IR procedure. In the DIR-FS group, fullerenol C60 and sevoflurane were administered. Biochemical and histological evaluations were performed on collected heart and lung tissues. Results: Histological examination of heart tissues showed significantly higher necrosis, polymorphonuclear leukocyte infiltration, edema, and total damage scores in the DIR group compared to controls. These effects were attenuated in fullerenol-treated groups. Lung tissue examination revealed more alveolar wall edema, hemorrhage, vascular congestion, polymorphonuclear leukocyte infiltration, and higher total damage scores in the DIR group compared to controls, with reduced injury parameters in the fullerenol-treated groups. Biochemical analyses indicated significantly higher total oxidative stress, oxidative stress index, and paraoxonase-1 levels in the DIR group compared to the control and diabetic groups. These levels were lower in the fullerenol-treated groups. Conclusions: Distant organ damage in the lung and heart tissues due to lower-extremity ischemia-reperfusion injury can be significantly reduced by fullerenol C60.
Read full abstract