Disposal of radioactive liquid wastes poses a particularly vexing problem, as these wastes contain various radionuclides and chemicals used in processing operations which are potentially dangerous, even in low radionuclide concentrations. Sorptive properties of minerals, particularly ion-exchange reactions, have been studied for potential direct application in waste treatment and for defining the fate of radionuclides when released to soils and geologic formations. Because most waste streams normally contain stable ion concentrations far in excess of radioactive ions, sorption reactions of interest are those which exhibit high selectivity for the radionuclides. Structural and/or steric factors are generally of highest significance in selective reactions. Micaceous minerals selectively sorb radiocesium from high sodium, aluminum, or calcium solutions, primarily because of favorable structure. Zeolitic minerals show selectivity for certain ions by excluding other ions whose size exceed lattice parameters. Some sorbents show selective sorption reactions under particular pH conditions; thus alumina and related hydrous oxides selectively sorb radioactive cobalt and radiostrontium in alkaline sodium systems. In addition to the exchange reactions, sorb nt properties, such as flocculation, swelling, and absorption of liquids and chemical properties of radionuclides, are important considerations in waste-disposal operations and management. In practical applications of the sorptive phenomena in waste disposal, it is necessary to know the solution characteristics, sorbent properties, and formation characteristics, as well as the interactions of these factors. In the hydraulic fracturing technique employed at Oak Ridge, the waste-solution characteristics influence the choice of sorbents used to prepare waste-cement slurries. The high sodium salt concentration requires attapulgite instead of bentonite, and illite is added to fix radioactive cesium. To immobilize the mix after injection underground, cement is added which further complicates the reactions and behavior of the clay slurries. The behavior during injection and ultimate setting of the grout is further influenced by the characteristics of the formation. Each underground disposal operation will require understanding of the environment into which the waste is placed. The final facility and technique should be tailored to meet the requirements of maintaining safe operation, as well as of insuring long-term safety for future generations. End_of_Article - Last_Page 2091------------
Read full abstract