Power grids are a combined system where the electrical energy produced by the power plants is transmitted to consumers. This forms a specific interdependence where the recipients have a significant impact on the power quality. Therefore, the nonlinear loads connected by households and industrial customers cause current and voltage distortion in the power networks. This creates the need for accurate measurement of nonsinusoidal voltage and current composed not only from the fundamental component but also containing higher harmonics, interharmonics, and subharmonics. In order to ensure high transformation accuracy of distorted current and voltage, the inductive instrument transformers have to be tested in these conditions. Many papers describe their behavior during the transformation of sinusoidal current or voltage. Nowadays, the scientific field in this scope is focused on the evaluation of their exploitation properties for distorted signals. The common problem of inductive instrument transformers is the self-generation of low-order higher harmonics to the secondary current or voltage. In the case of the inductive VTs, an additional problem results from the resonance caused by the parasitic capacitance of the primary winding. The proposed solutions to compensate for the values of current or voltage errors and phase displacement of inductive instrument transformers are also analyzed.
Read full abstract