The sampled-data stabilization of a fractional continuous linear system under arbitrary sampling periods was first investigated in this paper wherein novel co-designed sampled-data controllers were constructed based on the compensation of scaling gains. With the help of fractional difference approximation, sufficient and necessary conditions for global asymptotic stability were first presented in the discrete-time domain, and then co-designed sampled-data controllers were constructed with only the “newest” or “oldest” state information available for controller design. Due to the compensation scheme between scaling gains and sampling periods, much more flexibility on selecting different sampling periods was provided in the sampled-data stabilization of the fractional continuous linear system which is significantly preferred for digital implementation. Numerical studies are also presented to illustrate the effectiveness of our co-designed sampled-data controllers under different sampling periods.
Read full abstract