Over the past two decades, significant efforts have been expended to identify the photochemical decomposition products of the OH radical reactions of various polycyclic aromatic compounds (PAC), such as naphthalene, methylnaphthalenes, acenaphthene and phenanthrene (1, 2, 3, 4, 5, 6, 7). Although these parent PAC are predominantly found in the gas phase, many of their oxidation products have been found largely in the particle phase (4, 7, 8). These products include diones, hydroxy-, and nitrated products as well as many products resulting from ring-opening steps. It is, or should be, the goal of every laboratory study on atmospheric processes to apply the laboratory results to real world samples. To this end, we have obtained particulate matter air samples, as well as some smog episode samples, from Seoul Korea and have searched for the known decomposition products of the above mentioned PAC. To eliminate the use of chlorinated solvents used in the extraction and analysis of particulate matter samples, we have been utilizing the direct thermal desorption of small (4 mm diameter) punches of filters followed by Multidimensional Gas Chromatography-Time of Flight Mass Spectrometry (TD-GCxGC-TOFMS) for the analysis of the desorbed compounds. So far, we have detected 14 of the known decomposition products of naphthalene, acenaphthene and phenanthrene in the Seoul pollution episode samples. These include: 1-hydroxynaphthalene, (E) 2-formylcinnamaldehyde, phthalic anhydride, phthalide, 1,2-naphthalic anhydride, 9-hydroxyphenanthrene and dibenzopyrone.
Read full abstract