Tunable metasurfaces offer a promising avenue for dynamically modulating terahertz waves. Phase-change materials are crucial in this dynamic modulation, enabling precise and reversible control over the electromagnetic properties of the metasurfaces. In this study, we designed and experimentally fabricated a tunable lattice-induced transparent metasurface. This metasurface comprises two gold rod resonators exhibiting different periodic distributions, each supporting an electric dipole resonance at 2.03 THz and a surface lattice resonance at 1.51 THz, respectively. By combining these structures, we realize lattice-induced transparency. Simulation results show that the phase change of Ge2Sb2Te5 modulates these resonances, with the crystalline state significantly weakening their resonance strength intensity. The maximum modulation depth of the lattice-induced transparency peak can reach 44.4%. Experimental results of laser-induced GST phase changes confirm a modulation depth of 42.4%. This innovative metasurface design holds promise for applications in terahertz communication systems.
Read full abstract