Acid-base properties are the simplest expression of compounds' coordinating ability. In the present work, we studied in silico how the gas-phase Brønsted acidity (GA) of several polycyano-substituted compounds change when cyano (CN) groups are replaced by 1,2,2-tricyanovinyl (TCNV) groups in (iso)cyanic acid, dicyanoamine, cyanoform, and hydrogen tetracyanoborate. Different tautomers and conformers/isomers are included in this study. Gas-phase acidity values are compared with the acidities of various acids, including percyanated protonated monocarba-closo-dodecaborate (carborane acid) and dodecaborate, as well as hydrogen cyanide and 1,2,2-tricyanoethene. An estimation of acetonitrile (MeCN), dimethylsufoxide (DMSO), and 1,2-dichloroethane (DCE) acidities is presented using the COSMO-RS method and correlation analysis. The strongest acid with four TCNV groups shows remarkable acidic properties.
Read full abstract