This research examines the overtopping volumes associated with focused wave groups on smooth dikes with an emerged toe. Focused wave groups are employed to represent the highest waves of random sea states in a compact form, obviating the need to model the entire irregular wave train. This study investigates how overtopping volumes are affected by focus location and phase. A total of 418 experimental tests were gathered and analyzed. Data with overtopping volumes below 600 L per meter (prototype conditions) were excluded in order to focus on extreme overtopping events, resulting in 324 relevant test cases. The experiments used first-order wave generation theory to analyze structural response. Subsequent studies will address the errors induced by this approximation and compare it with second-order wave generation. The experiments simulated extreme wave impacts on an idealized coastal layout, comprising a 1:6.3 foreshore slope and three different dike slopes, including vertical structures, with the initial still water level set below the dike toe. This study employed the NewWave theory to generate focused wave groups, with the objective of extending recent research on wave overtopping under varied conditions. The results, analyzed in both dimensional and non-dimensional forms, indicate that overtopping volumes are significantly influenced by the focus phase. Critical focus locations were identified at a distance of one-third of the deep-water wavelength from the toe.
Read full abstract