A quantitative description of the dynamics of droplet motion has been a long-standing concern in electrowetting research. Although many static and dynamic models focusing on droplet motion induced by electrowetting-on-dielectric (EWOD) already exist, some dynamic features do not fit these models well, especially the dynamic saturation phenomenon. In this paper, a dynamic saturation model of droplet motion on the single-plate EWOD device is presented. The phenomenon that droplet velocity is limited by a dynamic saturation effect is precisely predicted. Based on this model, the relationship between droplet motion and device physics is extensively discussed. The static saturation phenomenon is treated with a double-layer capacitance electric model, and it is demonstrated as one critical factor determining the dynamics of droplet motion. This work presents the relationship between dynamics of electrowetting induced droplet motion and device physics including device structure, surface material and interface electronics, which helps to better understand electrowetting induced droplet motions and physics of digital microfluidics systems.
Read full abstract