Polymer electrolytes are of interest for applications in energy storage. Molecular simulations of ion transport in polymer electrolytes have been widely used to study the conductivity in these materials. Such simulations have generally relied on classical force fields. A peculiar feature of such force fields has been that in the particular case of lithium ions (Li+), their charge must be scaled down by approximately 20% to achieve agreement with experimental measurements of ion diffusivity. In this work, we present first-principles calculations that serve to justify the charge-scaling factor and van der Waals interaction parameters for Li+ diffusion in poly(ethylene glycol) (PEO) with bistriflimide (TFSI-) counterions. Our results indicate that a scaling factor of 0.79 provides good agreement with DFT calculations over a relatively wide range of Li+ concentrations and temperatures, consistent with past reports where that factor was adjusted by trial and error. We also show that such a scaling factor leads to diffusivities that are in quantitative agreement with experimental measurements.
Read full abstract