In this paper, we have first presented a new computational procedure for the calculation of the "true" forward scattered fields of a multicomponent object. By "true" we mean fields that are not limited by the first-order approximations, such as those used in the first-order Born and Rytov calculations. Although the results shown will only include the second-order fields for a multicomponent object, the computational procedure can easily be generalized for higher order scattering effects. Using this procedure we have shown by computer simulation that even when each component of a two-component object is weakly scattering, the multiple scattering effects become important when the components are blocking each other. We have further shown that when strongly scattering components that are large compared to a wavelength are not blocking each other, the scattering effects can be ignored. Both these conclusions agree with intuitive reasoning. Since all the currently available diffraction tomography algorithms are based on the assumption that the object satisfies the first-order scattering assumption, it is interesting to test them under conditions when this assumption is violated. We have used the scattered fields obtained with the new computational procedure to test these algorithms, and shown the resulting artifacts. Our main conclusion drawn from this computer simulation study is that even when object inhomogeneities are as small as 5 percent of the background, multiple scattering can introduce severe distortions in multicomponent objects.
Read full abstract