The topic of fractional calculus (derivatives and integrals of arbitrary orders) is enjoying growing interest not only among mathematicians, but also among physicists and engineers (see [E.M. El-Mesiry, A.M.A. El-Sayed, H.A.A. El-Saka, Numerical methods for multi-term fractional (arbitrary) orders differential equations, Appl. Math. Comput. 160 (3) (2005) 683–699; A.M.A. El-Sayed, Fractional differential–difference equations, J. Fract. Calc. 10 (1996) 101–106; A.M.A. El-Sayed, Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal. 33 (2) (1998) 181–186; A.M.A. El-Sayed, F.M. Gaafar, Fractional order differential equations with memory and fractional-order relaxation–oscillation model, (PU.M.A) Pure Math. Appl. 12 (2001); A.M.A. El-Sayed, E.M. El-Mesiry, H.A.A. El-Saka, Numerical solution for multi-term fractional (arbitrary) orders differential equations, Comput. Appl. Math. 23 (1) (2004) 33–54; A.M.A. El-Sayed, F.M. Gaafar, H.H. Hashem, On the maximal and minimal solutions of arbitrary orders nonlinear functional integral and differential equations, Math. Sci. Res. J. 8 (11) (2004) 336–348; R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien, 1997, pp. 223–276; D. Matignon, Stability results for fractional differential equations with applications to control processing, in: Computational Engineering in System Application, vol. 2, Lille, France, 1996, p. 963; I. Podlubny, A.M.A. El-Sayed, On Two Definitions of Fractional Calculus, Solvak Academy of science-institute of experimental phys, ISBN: 80-7099-252-2, 1996. UEF-03-96; I. Podlubny, Fractional Differential Equations, Academic Press, 1999] for example). In this work we are concerned with the fractional-order logistic equation. We study here the stability, existence, uniqueness and numerical solution of the fractional-order logistic equation.
Read full abstract