The biosynthesis of metal oxide nanoparticles using leaf extract of medicinal plants is a promising substitute for the traditional chemical method. This work aimed to synthesize zinc oxide nanoparticles using a green approach from local "Dholkolmi" (Ipomoea carnea) leaf extract which is a medicinal plant growing outside the roads of different regions of Bangladesh. The biosynthesized zinc oxide nanoparticles (ZnONPs) were characterized using ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, particle size analyzer, zeta-potential, scanning electron microscopy-energy dispersive spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. The results of UV-visible spectrophotometers observed an absorption peak at 373 nm wavelength, which confirmed the synthesis of ZnONPs in the solution. ZnONP sizes determined by XRD, DLS, and TEM are approximately ~37 nm, 105.61 nm, and 19.66 nm, respectively. ZnONPs were present because of the strong oxygen and zinc signals in the EDX profile. Additionally, this research assessed the antifungal activity of the biosynthesized ZnONPs and as well as folicur-incorporated ZnONPs against Rhizoctonia solani by the poison bait technique. According to the result of this study, ZnONPs synthesized from Ipomoea carnea leaf extract showed no promising result against Rhizoctonia solani mycelial growth reduction. But folicur-incorporated ZnONPs revealed a significant finding with a maximum 100% inhibition of mycelial growth at 1:1 and 3:1 ratio of ZnONPs with folicur fungicide under in vitro conditions. In the net house experiment, folicur-incorporated ZnONPs at a 1:1 ratio of ZnONPs with folicur showed considerable disease inhibition (26.96% RLH) as compared to disease control (52.83% RLH). In the case of rainfed transplanted Aus (March-June), the highest percentage of RLH was recorded in disease control (64.61%), and the lowest RLH was found in folicur (24.79%) followed by a 1:1 ratio of ZnONPs with folicur (32.10%) in field condition. On the other hand, the highest percentage of RLH was recorded in disease control (65.31%) and the lowest RLH was found in folicur (18.14%) followed by a 1:1 ratio of ZnONPs with folicur (21.39%) in rainfed transplanted Aman (July-November) season. The findings of the in vitro and in vivo studies provided evidence that ZnONPs and folicur had a strong synergistic antifungal impact and may be employed as a possible rice sheath blight disease management agent.
Read full abstract