The vagal innervation of the proximal gastrointestinal (GI) tract is lateralized. To determine whether this pattern is specified as early as the perinatal period, neonatal rat pups were given unilateral cervical vagotomies. Separate groups received (1) transections below the left nodose ganglion, (2) left cervical resections that included removal of the nodose ganglion, or (3) sham surgeries. At 4 months of age, each animal’s vagal afferent projections from the unoperated side were mapped by injecting the nodose with WGA-HRP, preparing the stomach as wholemounts, and processing the tissue with tetramethyl benzidine. The two types of vagal afferent endings in GI smooth muscle, namely intraganglionic laminar endings and intramuscular arrays, were surveyed separately, and their regional distributions were mapped. Changes in the nucleus of the solitary tract (NST) and dorsal motor nucleus of the vagus (DMNX) were assessed with cell counts and area measurements. Neonatal loss of the vagus innervating one side of the GI tract, with or without ganglionectomy, did not cause the unoperated vagus to sprout to the denervated side. In addition, removal of the projections to the one side of the target organ did not produce a reorganization of the projection maps of the unoperated vagus within its normal or ipsilateral wall of the GI tract. Although the regional patterns of the unoperated ipsilateral vagus were not affected, the packing densities of both types of afferents supplied by this trunk were moderately reduced. The DMNX of the vagotomized side displayed extensive (∼83%) neuronal loss; the DMNX on the unoperated side as well as the NST on both sides exhibited limited (∼20–25%) losses. The lack of a peripheral projection field reorganization — except for a moderate down-regulation — after complete unilateral denervation suggests that both the laterality and the afferent terminal phenotypes (or target tissues) of the vagus in the proximal GI tract are specified by postnatal day one in the rat. The present results, taken together with other observations, also suggest that three different combinations of signals orchestrate the commitments of vagal afferents respectively to (1) the side of the organ, (2) the region within the organ wall, and (3) the accessory and innervated tissues that complex with the fully differentiated ending.
Read full abstract