Atomically precise gold nanoclusters display properties that are unseen in larger nanoparticles. When the number of gold atoms is sufficiently small, the clusters exhibit molecular properties. Their study requires extensive use of classic molecular physical chemistry and, thus, methods such as vibrational spectroscopies, electrochemistry, density functional theory and molecular dynamics calculations, and of course nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopies. NMR and EPR studies have been mostly carried out on the benchmark, stable molecules Au25(SR)18, Au38(SR)24, Au102(SR)44, and Au144(SR)60 (where SR = thiolate). In this Account, we showcase examples primarily taken from our previous and ongoing NMR and EPR studies, which we hope will trigger further interest in the use of these sensitive, though often underutilized, techniques. Indeed, 1D and 2D NMR spectra of pure, atomically precise clusters can be very detailed and informative. Molecular clusters are molecules and, thus, have discrete energy levels and undergo stepwise oxidation or reduction. The effect of the charge state on the chemical shifts and line shapes is a function of the ligand type (ligands differ due to specific bonds with different Au atom types) and the position of the chemical group along the ligand backbone: for groups near the Au core, they can be very dramatic. Ligand-protected gold clusters are hard-soft molecules where a hard metal core is surrounded by a dynamic molecular layer. The latter provides a nanoenvironment that interfaces the cluster core with the surrounding environment and can be permeated by molecules and ions. NMR spectroscopy is especially useful to assess its structure. For example, the data show that whereas long alkanethiolates form bundles, shorter chains exhibit more conformational freedom and are quite folded. NMR spectroscopy allows studying diastereotopic effects and provides information on possible hydrogen bonds of ligands with sulfur or surface gold atoms. EPR spectroscopy is a very precise technique to check and characterize the magnetic state of gold clusters or clusters doped with foreign-metal atoms. Electron nuclear double resonance (ENDOR) provides a powerful tool to assess the interaction of an unpaired electron with nuclei, as we showed for 197Au and 1H. It can be used as a sensitive probe of the spin-density distribution in nanoclusters: for example, it showed that the singly occupied molecular orbital may span outside the Au core by nearly 6 Å. Solid-state EPR spectroscopy has provided compelling evidence that the specific ligands and the crystallinity degree are very important factors in determining the interactions between clusters in the solid state. Depending on the condition, paramagnetic, superparamagnetic, ferromagnetic, or antiferromagnetic behavior can be observed. Time-resolved EPR was successfully tested to determine the efficiency of singlet-oxygen generation via sensitization of Au25 clusters. This Account thus demonstrates some of the remarkable insights that can be gained into the properties of atomically precise clusters through detailed NMR and EPR studies.
Read full abstract