A new development of Finite Volumes (FV, for short) and its theoretical analysis are the purpose of this work. Recall that FV are known as powerful tools to address equations of conservation laws (mass, energy, momentum,...). Over the last two decades investigators have succeeded in putting in place a mathematical framework for the theoretical analysis of FV. A perfect illustration of this progress is the design and mathematical analysis of Discrete Duality Finite Volumes (DDFV, for short). We propose now a new class of DDFV for 2nd order elliptic equations involving discontinuous diffusion coefficients or nonlinearities. A one-dimensional linear elliptic equation is addressed here for illustrating the ideas behind our numerical strategy. The algebraic structure of the discrete system we have got is different from that of standard DDFV. The main novelty is that the so-called diamond mesh elements are confined in homogeneous zones for flow problems governed by piecewise constant coefficients. This is got from our judicious definition of the primal mesh. The gain is that there is no need to compute homogenized coefficients to be allocated to the so-called diamond cells as required to conventional DDFV. Notice that poor homogenized permeability allocated to diamond elements leads to poor approximations of fluxes across grid-block interfaces. Moreover for 1-D flow problems in a porous medium involving permeability discontinuities (piecewise constant permeability for instance) the proposed FV scheme leads to a symmetric positive-definite discrete system that meets the discrete maximum principle; we have shown its second order convergence under relevant assumptions.
Read full abstract