In this paper, we use semidefinite programming and representation theory to compute new lower bounds on the crossing number of the complete bipartite graph Km,n\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$K_{m,n}$$\\end{document}, extending a method from de Klerk et al. (SIAM J Discrete Math 20:189–202, 2006) and the subsequent reduction by De Klerk, Pasechnik and Schrijver (Math Prog Ser A and B 109:613–624, 2007). We exploit the full symmetry of the problem using a novel decomposition technique. This results in a full block-diagonalization of the underlying matrix algebra, which we use to improve bounds on several concrete instances. Our results imply that cr(K10,n)≥4.87057n2-10n\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathop {\ extrm{cr}}\\limits (K_{10,n}) \\ge 4.87057 n^2 - 10n$$\\end{document}, cr(K11,n)≥5.99939n2-12.5n\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathop {\ extrm{cr}}\\limits (K_{11,n}) \\ge 5.99939 n^2-12.5n$$\\end{document}, cr(K12,n)≥7.25579n2-15n\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathop {\ extrm{cr}}\\limits (K_{12,n}) \\ge 7.25579 n^2 - 15n$$\\end{document}, cr(K13,n)≥8.65675n2-18n\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathop {\ extrm{cr}}\\limits (K_{13,n}) \\ge 8.65675 n^2-18n$$\\end{document} for all n. The latter three bounds are computed using a new and well-performing relaxation of the original semidefinite programming bound. This new relaxation is obtained by only requiring one small matrix block to be positive semidefinite.
Read full abstract