Acute respiratory infections (ARIs) represent a significant global health burden, contributing to high morbidity and mortality rates, particularly in vulnerable populations. Traditional methods for diagnosing and tracking ARIs often face limitations in terms of speed, accuracy, and scalability. The advent of artificial intelligence (AI) has the potential to revolutionize these processes by enhancing early detection, precise diagnosis, and effective epidemiological tracking. This review explores the integration of AI in the epidemiology and diagnosis of ARIs, highlighting its capabilities, current applications, and future prospects. By examining recent advancements and existing studies, this paper provides a comprehensive understanding of how AI can improve ARI management, offering insights into its practical applications and the challenges that must be addressed to realize its full potential.
Read full abstract