Groundwater vulnerability has gained widespread attention, particularly in Chiang Mai Province, one of Thailand’s fastest-growing cities, which is experiencing rapid development in both economic and social sectors. The expansion of urban communities and the industrial, tourism, and agriculture sectors has resulted in the overutilization of available resources, notably water resources. This overuse, coupled with the adoption of modern technology to boost productivity and meet market demands, has led to an increased reliance on groundwater to supplement surface water sources, providing benefits across all sectors. However, the economic and social growth plays a pivotal role in shaping the diversity of land use, encompassing residential, commercial, industrial, and agricultural activities. These activities, in turn, directly contribute to environmental pollution, particularly in terms of the risk of groundwater contamination in Chiang Mai Province. This study aims to predict the future vulnerabilities of groundwater resources under an ensemble of climate change scenarios and changes in land-use patterns. Chiang Mai Province in northern Thailand is one of the fastest-growing cities and therefore is experiencing rapid urbanization, as well as land-use pattern changes, which was important for the case study. The new DRASTIC model, namely the DRASTIC-LP model, combined with GIS-based techniques and overlay techniques, was used to generate the map of groundwater resource vulnerabilities. A point pollution source (P)-related land-use pattern (L) that represents contamination impacts was considered an additional new DRASTIC parameter. The study’s findings reveal the high reliability and maximum effectiveness of the new DRASTIC-LP model in assessing groundwater vulnerability and contamination-risk areas under a climate change scenario (by MIROC-ESM-CHEM model under RCP.8.5 scenario) and land-use pattern changes (by CA_Markov Chian Model) for both the current year (2020) and the next 50-year period (2021–2070). Furthermore, the new DRASTIC-LP model is employed to trace the movement of pollutants from high- to very high-risk areas based on the groundwater vulnerability and contamination-risk maps. The results highlight that waste disposal dumping sites pose a more critical distribution and movement of pollutants when compared to industrial sites. Additionally, unconsolidated aquifers and cracked consolidated rock aquifers show a potentially higher occurrence of pollutant distribution and movement when compared to consolidated aquifers. Consequently, the study’s outcomes are applied to formulate guidelines for the management and control of groundwater resource contamination. These guidelines serve as valuable tools for decision makers, aiding in pollution prevention and the effective management of contamination risks in groundwater resources.
Read full abstract