Maintaining safe operations in cyber physical systems is a complex task that must account for system degradation over time, since unexpected failures can result in the loss of life and property. Operational failures may be attributed to component degradation and disturbances in the environment that adversely impact system performance. Components in a CPS typically degrade at different rates, and, therefore, require continual monitoring to avoid unexpected failures. Moreover, the effects of multiple degrading components on system performance may be hard to predict. Developing and maintaining accurate physics-based system models can be expensive. Typically, it is infeasible to run a true system to failure, so researchers and practitioners have resorted to using data-driven techniques to better evaluate the effect of degrading components on overall system performance. However, sufficiently organized datasets of system operation are not readily available; the output of existing simulations is not organized to facilitate the use of data-driven machine learning techniques for prognostics. As a step toward addressing this problem, in this paper, we develop a data management framework and an end-to-end simulation testbed to generate such data. The framework facilitates the development and comparison of various system-level prognostics algorithms. We adopt a standard data-centered design methodology, combined with a model based engineering approach, to create a data management framework that address data integrity problems and facilitates the generation of reproducible results. We present an ontological design methodology centered around assets, processes, and data, and, as a proof of concept, develop an unmanned aerial vehicle (UAV) system operations database that captures operational data for UAVs with multiple degrading components operating in uncertain environments. Aim: The purpose of this work is to provide a systematic approach to data generation, curation, and storage that supports studies in fault management and system-level prognostics for real-world and simulated operations. We use a data-driven simulation-based approach to enable reliable and reproducible studies in system-level prognostics. This is accomplished with a data management methodology that enforces constraints on data types and interfaces, and decouples various parts of the simulation to enable proper links with related metadata. The goal is to provide a framework that facilitates data analysis and the development of data-driven models for prognostics using machine learning methods. We discuss the importance of systematic data management framework to support data generation with a simulation environment that generates operational data. We describe a standard framework for data management in the context of run-to-failure simulations, and develop a database schema and an API in MATLAB® and Python to support system-level prognostics analyses. Methods: A systematic approach to defining a data management framework for the study of prognostics applications is a central piece of this work. A second important contribution is the design of a Monte Carlo simulation environment to generate run to failure data for CPS with multiple degrading components. We adopt a bottom-up approach, starting with requirements and specifications, then move into functionality and constraints. With this framework, we use a Monte-Carlo simulation approach to generate data for developing and testing a variety of system-level prognostics algorithms. Results: We have developed a data management framework that can handle high dimensional and complex data generated from real or simulated systems for the study of prognostics. In this paper, we show the advantages of a well-organized data management framework for tracking high-fidelity data with high confidence for complex, dynamic CPS. Such frameworks impose data logging discipline and facilitate downstream uses for developing and comparing different data-driven monitoring, diagnostics, and system-level prognostics algorithms. Conclusions: In this paper, we demonstrate the design, development, and use of an asset, process, and data management framework for the research to develop prognostics & health management applications. This work helps fill a gap for system-level remaining useful life studies by providing a comprehensive simulation environment that can generate run to failure data, and a data management architecture that addresses the needs for system-level prognostics research. The framework is demonstrated with a Monte-Carlo simulation of a UAV system that operates multiple flights under different environmental conditions and degradation sources. This architecture for data management will enable researchers to conduct more complex experiments for a variety of cyber physical systems applications.
Read full abstract