The detection of human skin color has been studied extensively during the past two decades. It is an essential task for various computer vision applications such as biometric authentication, face/hands tracking and gesture analysis. New machine learning methods are effective for skin color detection. However, they are not suitable for real time applications since they are computationally heavy. A lightweight approach for skin color detection consists of using segmentation rules extracted by an investigation on skin color distribution. The kin appearance varies with diversity of image types, acquisition parameters and scene illumination. There are no general segmentation rules that provide effective skin segmentation for different scene conditions. In this paper we present a real-time skin color detector which adapts itself according to tracked human parts. First, initial thresholds are calculated using two popular skin datasets. Those thresholds can also be calculated quickly using small training sets. The proposed skin color detector showed comparable skin segmentation to DeepLabV3++ application and an improvement in term of F1 measure when compared to methods that relies on static rules.
Read full abstract