Abstract Objectives This article presents the use of machine learning techniques such as artificial neural networks, K-nearest neighbors (KNN), naive Bayes, and decision trees in the prediction of hemoglobin variants. To the best of our knowledge, this is the first study using machine learning models to predict suspicious cases with HbS or HbD Los Angeles carriers state. Methods We had a dataset of 238 observations, of which 128 were HbD carriers, and 110 were HbS carriers. The features were age, sex, RBC, Hb, HTC, MCV, MCH, RDW, serum iron, TIBC, ferritin, HbA2, HbF, HbA0, retention time (RT) of the abnormal peak, and the area under the peak of the abnormal peak. KNN, naive Bayes, decision tree models, and artificial neural network models were trained. Model performances were estimated using 7-fold cross-validation. Results When RT, the key point of differentiation used in high-performance liquid chromatography (HPLC), was included as a feature, all models performed well. When RT was excluded (eliminated), the deep learning model performed the best (Accuracy: 0.99; Specificity: 0.99; Sensitivity: 0.99; F1 score: 0.99), while the naive Bayes model performed the worst (Accuracy: 0.94; Specificity: 0.97; Sensitivity: 0.90; F1 score: 0.93). Conclusions Deep learning and decision tree models have demonstrated high performance and have the potential to be integrated into medical laboratory work practices as a tool for hemoglobinopathy detection. These outcomes suggest that when machine learning models are fed enough data, they can detect a wide range of hemoglobin variants. However, more comprehensive studies with data from a larger number of patients and hemoglobinopathies will be useful for validating our models.
Read full abstract