Acid-sensing ionic channels (ASICs) have been shown to have a significant role in a growing number of physiological and pathological processes, such as nociception, synaptic transmission and plasticity, mechanosensation, and acidosis-induced neuronal injury. The discovery of pharmacological agents targeting ASICs has significant therapeutic potential and use as a research tool. In our work, we studied the action of transient perfusion (5-15 s) of aminoglycosides (AGs) (streptomycin and neomycin) on the proton-gated ionic currents in dorsal root ganglion (DRG) neurons of the rat and in human embryonic kidney (HEK)-293 cells. In DRG neurons, streptomycin and neomycin (30 microM) produced a significant, concentration-dependent, and reversible reduction in the amplitude of the proton-gated current, and a slowing of the desensitization rate of the ASIC current. Gentamycin (30 microM) also showed a significant reversible action on the ASIC currents. The curves of the pH effect for streptomycin and neomycin indicated that their effect was not significantly affected by pH. In HEK-293 cells, streptomycin (30 microM) produced a significant reduction in the amplitude of the proton-gated current. Neomycin and gentamycin had no significant action. Reduction of extracellular Ca(2+) concentration produced a significant increase in the action of streptomycin and neomycin on the desensitization time course of ASIC currents. These results indicate that ASICs are molecular targets for AGs, which may contribute to the understanding of their actions on excitable cells. Moreover, AGs may constitute a source to develop novel molecules with a greater affinity, specificity, and selectivity for the different ASIC subunits.
Read full abstract