In this study of constructing gross primary production (GPP) based on solar-induced chlorophyll fluorescence (SIF) and analyzing its spatial–temporal characteristics and influencing factors, numerous challenges are encountered, especially in arid regions with fragile ecologies. Coupling SIF with other factors to construct the GPP and elucidating the influencing mechanisms of environmental factors could offer a novel theoretical method for the comprehensive analysis of GPP in arid regions. Therefore, we used the GPP station data from three different ecosystems (grasslands, farmlands, and desert vegetation) as well as the station and satellite data of environmental factors (including photosynthetically active radiation (PAR), a vapor pressure deficit (VPD), the air temperature (Tair), soil temperature (Tsoil), and soil moisture content (SWC)), and combined these with the TROPOMI SIF (RTSIF, generated through the reconstruction of SIF from the Sentinel-5P sensor), whose spatiotemporal precision was improved, the mechanistic light reaction model (MLR model), and different weather conditions. Then, we explored the spatiotemporal characteristics of GPP and its driving factors in local areas of Xinjiang. The results indicated that the intra-annual variation of GPP showed an inverted “U” shape, with the peak from June to July. The spatial attributes were positively correlated with vegetation coverage and sun radiation. Moreover, inverting GPP referred to the process of estimating the GPP of an ecosystem through models and remote sensing data. Based on the MLR model and RTSIF, the inverted GPP could capture more than 80% of the GPP changes in the three ecosystems. Furthermore, in farmland areas, PAR, VPD, Tair, and Tsoil jointly dominate GPP under sunny, cloudy, and overcast conditions. In grassland areas, PAR was the main influencing factor of GPP under all weather conditions. In desert vegetation areas, the dominant influencing factor of GPP was PAR on sunny days, VPD and Tair on cloudy days, and Tair on overcast days. Regarding the spatial correlation, the high spatial correlation between PAR, VPD, Tair, Tsoil, and GPP was observed in regions with dense vegetation coverage and low radiation. Similarly, the strong spatial correlation between SWC and GPP was found in irrigated farmland areas. The characteristics of a low spatial correlation between GPP and environmental factors were the opposite. In addition, it was worth noting that the impact of various environmental factors on GPP in farmland areas was comprehensively expressed based on a linear pattern. However, in grassland and desert vegetation areas, the impact of VPD on GPP was expressed based on a linear pattern, while the impact of other factors was more accurately represented through a non-linear pattern. This study demonstrated that SIF data combined with the MLR model effectively estimated GPP and revealed its spatial patterns and driving factors. These findings may serve as a foundation for developing targeted carbon reduction strategies in arid regions, contributing to improved regional carbon management.
Read full abstract