ABSTRACT The increase in the amount of waste generated from construction and demolition (C&D) has raised concerns regarding landfill space and greenhouse gas emissions. One of the waste management practices that can remedy these issues is to convert the C&D wood waste into biofuel. The technical aspects, environmental benefits, and economic feasibility of such a practice may vary from one case to another and should be evaluated before implementation. In this study, techno-economic feasibility of establishing a biofuel production plant, which uses C&D wood waste delivered to the City of Vancouver (CoV)’s landfill in British Columbia, Canada is conducted. In addition, the GHG emission reduction of biofuel production compared with landfilling the C&D wood waste is investigated. According to the results, the average GHG emissions from landfilling all the waste is 24,350 tonnes of CO2 eq. while the emissions from biofuel production are 11,156 and 10,539 tonnes CO2 eq. for the biofuel production plant using diesel-based and electric-based equipment pieces, respectively. The GHG emission reductions are then monetized and included in the economic analysis. Results indicate that biofuel production is economically feasible only if the impacts of GHG emission reduction are considered. Moreover, sensitivity analysis and scenario analyses are performed on financial parameters, wood waste supply, biofuel demand, plant capacity, and plant ownership schemes. Based on these analyses, the biofuel selling price is the most impactful financial parameter on the outcome of economic feasibility. A 50% change in the biofuel selling price results in 42% and 45% change in NPV of the project for diesel-based and electric-based equipment, respectively. Furthermore, the ownership scheme, where CoV and a partner split the ownership and the partner operates the plant is the best option, with a net present value of more than $69 million.
Read full abstract