In this paper we construct three infinite series and two extra triples ( E 8 and E ̂ 8 ) of complex matrices B, C, and A= B+ C of special spectral types associated to Simpson's classification in Amer. Math. Soc. Proc. 1 (1992) 157 and Magyar et al. classification in Adv. Math. 141 (1999) 97. This enables us to construct Fuchsian systems of differential equations which generalize the hypergeometric equation of Gauss–Riemann. In a sense, they are the closest relatives of the famous equation, because their triples of spectral flags have finitely many orbits for the diagonal action of the general linear group in the space of solutions. In all the cases except for E 8, we also explicitly construct scalar products such that A, B, and C are self-adjoint with respect to them. In the context of Fuchsian systems, these scalar products become monodromy invariant complex symmetric bilinear forms in the spaces of solutions. When the eigenvalues of A, B, and C are real, the matrices and the scalar products become real as well. We find inequalities on the eigenvalues of A, B, and C which make the scalar products positive-definite. As proved by Klyachko, spectra of three hermitian (or real symmetric) matrices B, C, and A= B+ C form a polyhedral convex cone in the space of triple spectra. He also gave a recursive algorithm to generate inequalities describing the cone. The inequalities we obtain describe non-recursively some faces of the Klyachko cone.
Read full abstract