In the study of balance and postural control the (Single) Inverted Pendulum model (SIP) has been taken for a long time as an acceptable paradigm, with the implicit assumption that only ankle rotations are relevant for describing and explaining sway movements. However, more recent kinematic analysis of quiet standing revealed that hip motion cannot be neglected at all and that ankle-hip oscillatory patterns are characterized by complex in-phase and anti-phase interactions, suggesting that the SIP model should be substituted by a DIP (Double Inverted Pendulum) model. It was also suggested that DIP control could be characterized as a kind of optimal bi-axial active controller whose goal is minimizing the acceleration of the global CoM (Center of Mass). We propose here an alternative where active feedback control is applied in an intermittent manner only to the ankle joint, whereas the hip joint is stabilized by a passive stiffness mechanism. The active control impulses are delivered to the ankle joint as a function of the delayed state vector (tilt rotation angle + tilt rotational speed) of a Virtual Inverted Pendulum (VIP), namely a pendulum that links the ankle to the CoM, embedded in the real DIP. Simulations of such DIP/VIP model, with the hybrid control mechanism, show that it can reproduce the in-phase/anti-phase interaction patterns of the two joints described by several experimental studies. Moreover, the simulations demonstrate that the DIP/VIP model can also reproduce the measured minimization of the CoM acceleration, as an indirect biomechanical consequence of the dynamic interaction between the active control of the ankle joint and the passive control of the hip joint. We suggest that although the SIP model is literally false, because it ignores the ankle-hip coordination, it is functionally correct and practically acceptable for experimental studies that focus on the postural oscillations of the CoM.
Read full abstract