ABSTRACTNondestructive evaluation (NDE) techniques of phased array ultrasonic testing (PAUT) and digital X-ray radiography were employed on friction stir (FS)-welded Aluminum Alloy (AA)-2219-T87 specimens. PAUT intricacies required for scanning of FS-welded specimens with a 10-MHz 32-element transducer are discussed. The time corrected gain (TCG) calibration is required for scanning with an increase in index offset to compensate for decrease in A-Scan signal peak amplitude. Calibration techniques to find small defects with appropriate size tolerances are also established. The NDE technique of digital X-ray radiography is compared to PAUT, where it was found that a calibrated PAUT system is able to discover defects less than 0.2 mm where X-ray radiography could not. Incomplete penetration (IP), wormhole (WH), surface cavity (SC), and internal void (IV) defects are analyzed. Furthermore, an online PAUT system for FSW has been developed and successfully tested. The work provided herein will provide a gateway for an ultimate goal of an automated PAUT online sensing system.
Read full abstract