Quantitative studies of material budgets and resource allocation patterns of emergent plants are needed to fully understand nutrient and carbon cycling in wetlands. Whole-plant translocation patterns of nonstructural carbohydrates and synthesis of structural carbon were documented using two (shallow and deepwater) populations of Typha angustifolia in floodplain habitats of the Arakawa River, Japan. Monthly and bimonthly measurements of the concentrations of total carbon, non-structural carbohydrates, and water-soluble carbohydrates, as well as, estimates of standing stocks of aboveground (AG) and belowground (BG) biomass for both populations from 2002 to 2004 are described here. Annual patterns of carbon gain, rates of carbohydrate translocation between AG and BG organs, and rates of synthesis of structural carbon were estimated. Upward translocation supported all AG production for approximately 30 days. Afterward, the fraction of AG production supported by upward translocation decreased linearly with time, and completely diminished by Day 80 (counted from first day of growth; March 15). At Day 80, material translocation was directed downward and the percentage of downward translocation relative to AG net production increased until Day 170; there was a vigorous increase in downward translocation prior to senescence. In early summer (Day 80–110), more than half of the translocated materials were transformed into structural components, but by Day 125 only 30% was synthesized into total structural carbohydrates. Prior to senescence, there was a greater percentage of nonstructural carbohydrates in the rhizomes. Across the growing season (Day 60–153), the total amount of downward translocation was found to be proportional to AG production and the quantitative evaluation of the carbon budget shed further insight into the translocation process of this rhizomatous aquatic plants. In addition, insights on the differences between shallow and deepwater populations were gained. Especially, the deepwater population supported a higher fraction of vertical rhizomes compared to individuals sampled from the shallow water population.
Read full abstract