The study presents the first Pleistocene (0–1.9Ma) record of Deep Sea ostracods from the Bering Sea, derived primarily from Integrated Ocean Drilling Program Expedition 323, Site U1344 (59°3.0′N, 179°12.2′W, 3171m of water depth). Deep Sea ostracod abundances in the Bering Sea sediments are some of the lowest that have been recorded in bathyal and abyssal marine environments (<1 specimen per sediment gram). In comparison, benthic foraminifera are several orders of magnitude more abundant in the same samples. The humble ostracod assemblage at Site U1344 is predominantly composed of deep water species Krithe sawanensis, Fallacihowella sp. A, Cytheropteron spp., Eucytherura sp., Argilloecia toyamaensis, and Bradleya mesembrina. Less abundant taxa include Munseyella melzeri, Munseyella ristveti, Cluthia sp., Robertsonites hanaii, and Microcythere mediostriata. Some of these taxa (e.g. Fallacihowella sp. A, Bradleya mesembrina, Microcythere mediostriata) are reported for the first time in the North Pacific. The predominance of the genera Krithe, Fallacihowella, Cytheropteron and Argilloecia indicates cold, ventilated bottom waters. The deep Bering Sea ostracod assemblage shares many common and closely related species with continental slope faunas from the Gulf of Alaska, the Okhotsk Sea, the Arctic Ocean, and even the subpolar North Atlantic. A few continental shelf ostracods, such as species of Munseyella and Robertsonites, are present at Sites U1344 and U1343, in the northern slope of the Aleutian Basin. The presence of shallow water ostracods at the Bering Sea slope sites is possibly explained by sea ice rafting. Exceptionally low ostracod abundance in the U1344 record did not permit evaluating links between ostracod faunas and paleoceanographic conditions; however, an increase in ostracod occurrences throughout the middle Pleistocene at Site U1344 appears to correlate with general sea ice expansion in the Bering Sea. High primary surface productivity, high food flux and high sedimentation rates are considered to be the main factors diluting or suppressing Deep Sea ostracods in the Bering Sea, suggesting that ostracods may prefer living in more oligotrophic deep water environments with well oxygenated waters and moderate food supply.
Read full abstract