Accurate prediction of single-guide RNA (sgRNA) activity is crucial for optimizing the CRISPR/Cas9 gene-editing system, as it directly influences the efficiency and accuracy of genome modifications. However, existing prediction methods mainly rely on large-scale experimental data of a single Cas9 variant to construct Cas9 protein (variants)-specific sgRNA activity prediction models, which limits their generalization ability and prediction performance across different Cas9 protein (variants), as well as their scalability to the continuously discovered new variants. In this study, we proposed PLM-CRISPR, a novel deep learning-based model that leverages protein language models to capture Cas9 protein (variants) representations for cross-variant sgRNA activity prediction. PLM-CRISPR uses tailored feature extraction modules for both sgRNA and protein sequences, incorporating a cross-variant training strategy and a dynamic feature fusion mechanism to effectively model their interactions. Extensive experiments demonstrate that PLM-CRISPR outperforms existing methods across datasets spanning 7 Cas9 protein (variants) in three real-world scenarios, demonstrating its superior performance in handling data-scarce situations, including cases with few or no samples for novel variants. Comparative analyses with traditional machine learning and deep learning models further confirm the effectiveness of PLM-CRISPR. Additionally, motif analysis reveals that PLM-CRISPR accurately identifies high-activity sgRNA sequence patterns across diverse Cas9 protein (variants). Overall, PLM-CRISPR provides a robust, scalable, and generalizable solution for sgRNA activity prediction across diverse Cas9 protein (variants). The source code can be obtained from https://github.com/CSUBioGroup/PLM-CRISPR. Supplementary data are available at Bioinformatics online.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
3611 Articles
Published in last 50 years
Articles published on Deep Learning-based Model
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
3545 Search results
Sort by Recency