Mapping urban pluvial flooding (UPF) in data-scarce regions poses significant challenges, particularly when drainage systems are inadequate or outdated. These limitations hinder effective flood mitigation and risk assessment. This study proposes an innovative approach to address these challenges by integrating deep learning (DL) models with traditional methods. First, deep convolutional generative adversarial networks (DCGANs) were employed to enhance drainage network data generation. Second, deep recurrent neural networks (DRNNs) and multi-criteria decision analysis (MCDA) methods were implemented to assess UPF. The study compared the performance of these approaches, highlighting the potential of DL models in providing more accurate and robust flood mapping outcomes. The methodology was applied to Lahore, Pakistan—a rapidly urbanizing and data-scarce region frequently impacted by UPF during monsoons. High-resolution ALOS PALSAR DEM data were utilized to extract natural drainage networks, while synthetic datasets generated by GANs addressed the lack of historical flood data. Results demonstrated the superiority of DL-based approaches over traditional MCDA methods, showcasing their potential for broader applicability in similar regions worldwide. This research emphasizes the role of DL models in advancing urban flood mapping, providing valuable insights for urban planners and policymakers to mitigate flooding risks and improve resilience in vulnerable regions.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
2191 Articles
Published in last 50 years
Articles published on Deep Convolutional Network
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
2162 Search results
Sort by Recency