For more than a decade, communication systems based on the IEEE 802.11p technology—often referred to as Dedicated Short-Range Communications (DSRC)—have been considered a de facto industry standard for Vehicle-to-Infrastructure (V2I) communication. The technology, however, is often criticized for its poor scalability, its suboptimal channel access method, and the need to install additional roadside infrastructure. In 3GPP Release 14, the functionality of existing cellular networks has been extended to support V2X use cases in an attempt to address the well-known drawbacks of the DSRC. In this paper, we present a complex simulation study in order to benchmark both technologies in a V2I communication context and an urban scenario. In particular, we compare the DSRC, LTE in the infrastructural mode (LTE-I), and LTE Device-to-Device (LTE-D2D) mode 3 in terms of the average end-to-end delay and Packet Delivery Ratio (PDR) under varying communication conditions achieved through the variation of the communication perimeter, message generation frequency, and road traffic intensity. The obtained results are put into the context of the networking and connectivity requirements of the most popular V2I C-ITS services. The simulation results indicate that only the DSRC technology is able to support the investigated V2I communication scenarios without any major limitations, achieving an average end-to-end delay of less than 100 milliseconds and a PDR above 96% in all of the investigated simulation scenarios. The LTE-I is applicable for the most of the low-frequency V2I services in a limited communication perimeter (<600 m) and for lower traffic intensities (<1000 vehicles per hour), achieving a delay pf less than 500 milliseconds and a PDR of up to 92%. The LTE-D2D in mode 3 achieves too great of an end-to-end delay (above 1000 milliseconds) and a PDR below 72%; thus, it is not suitable for the V2I services under consideration in a perimeter larger than 200 m. Moreover, the LTE-D2D mode 3 is very sensitive to the distance between the transmitter and its serving eNodeB, which heavily impacts the PDR achieved.
Read full abstract