RO-diCN-PPV and C8-diCN-PPV, poly(1,4-phenylene-1,2-dicyanovinylene) with alkoxy and octyl side chains, have recently been shown to photodegrade via a singlet oxygen mechanism, and RO-diCN-PPV is seven times more stable. To improve photostability, 1,4-diazabicyclo[2.2.2]octane (DABCO), a singlet oxygen quencher, was used as a dopant. To our surprise, DABCO exhibited opposite effects on their photodegradation. With 15 mol% DABCO, degradation rate of C8-diCN-PPV decreased by 65%, while that of RO-diCN-PPV increased by 246%. The DABCO content in C8-diCN-PPV film remained unchanged during 20 min of illumination, but mostly disappeared in RO-diCN-PPV in only 5 min due to decomposition. IR and MW analysis results suggest that DABCO slowed down degradation of C8-diCN-PPV without altering the mechanism, but accelerated RO-diCN-PPV photodegradation by initiating a radical process. C8-diCN-PPV's HOMO energy is lower than that of DABCO by 1.78 eV, a gap too wide for efficient electron transfer to happen. On the other hand, the HOMO of RO-diCN-PPV is only lower by 1.14 eV, allowing DABCO to donate electron to photoexcited RO-diCN-PPV to initiate a radical process that damaged the polymer and destroyed DABCO itself. It was also found that, in RO-diCN-PPV, radical decomposition takes very different paths from those of RO-PPVs and produce very different products.
Read full abstract