In least-developed countries (LDCs), electricity shortages are the primary barrier to economic and social growth. Some remote areas in LDC rely on diesel-based systems. However, renewable energy must be taken into account for generating electricity because of the uncertainty of diesel fuel prices and the emissions of carbon dioxide. Hybrid energy systems (HES) are becoming increasingly popular, which is unsurprising given the rapid advancement of renewable energy technologies, which have made them the preferred method to respond to the current unreliable electricity supply, reduce the impact of global warming that occurs from electricity production, and contribute to cost reduction. This study explores the feasibility of utilizing a combination of solar PV, wind energy, and battery systems with the existing diesel generator in four different locations in Cambodia, Laos, Myanmar, and Bangladesh. Hybrid optimization multiples for electric renewables (HOMER) is used as a tool for techno-economic analysis and finding the possible combination of solar PV, wind, diesel, and battery. The multi-criteria decision-making (MCDM) technique was used to verify all configurations obtained from HOMER’s results. This approach considers environmental, economic, and technological factors by utilizing the AHP, TOPSIS, EDAS, and PROMETHEEE II techniques. The results show that PV/diesel with batteries is the optimum solution. This hybrid system comprises 89% PV penetration, a cost of electricity (COE) of 0.257 $/kWh, an initial capital cost (IC) of $244,277, and a net present cost (NPC) of $476,216 for a case study in Cambodia. Furthermore, this system can reduce almost 51,005 kg/year of carbon dioxide compared to a diesel-only system, while the cost of electricity is reduced.
Read full abstract